
DOCUMENT RESUME

ED 299 953 IR 013 466

AUTHOR Swan, Karen; Black, John B.
TITLE The Cross-Contextual Transfer of Problem Solving

Strategies from Logo to Non-Computer Domains.
PUB DATE Apr 88
NOTE 17p.; Paper presented at the Annual Meeting of the

American Educational Research Association (New
Orleans, LA, April 5-9, 1988).

PUB TYPE Reports - Research/Technical (143) --
Speeches /Conference Papers (150)

EDRS MICE MF01/PC01 Plus Postage.
DESCRIPTORS *Academic Achievement; Cognitive Mapping; Elementary

Education; Hypothesis Testing; *Learning Strategies;
*Problem Solving; *Programing; Psychological Studies;
*Transfer of Training

IDENTIFIERS *LOGO Programing Language; *Mental Models

ABSTRACT
This report investigated the relationship between

learning to program LOGO and the development of problem solving
skills. Subjects were 133 students in grades 4-8 who had at least 30
hours of experience with both graphics and lists programming in Logo.
Students were randomly assigned to one of three contextual groupings,
which received graphics, lists, or both graphics and list problems,
according to grade level. Groupings remained constant across six
instructional units corresponding to six problem solving strategies
believed to be helpful for children programming computers: subgoals
formation, forward chaining, backward chaining, systematic trial and
error, alternative problem representation, and analogical reasoning.
Highly significant differences were found across both contextual
groupings and grade levels for all strategies except backward
chaining, suggesting that a pedagogy combining a focus on particular
aspects of general problem solving, direct instruction, and a
mediated learning environment will enable the development of problem
solving skills with Logo programming and their transfer to
non-computing domains. Highly significant differences were also found
between grade levels on measures of subgoals formation, systematic
trial and error, and analogy, suggesting that there are developmental
differences in students' abilities to acquire and transfer particular
problem solving strategies. No significant differences were found
between contextual groupings, suggesting that students' abilities to
transfer problem solving skills did not vary depending upon the base
context(s) in which those skills were acquired. Data results are
displayed in one table. (43 references) (EW)

Reproductions supplied by EDRS are the best that can be made
from the original document.

** ***** ****************

I. '..

1

vi

U $ DEPARTMENT OF EDUCATION
Office of Educational Real lath and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

XThis document Ms been reproduced as
received from the person or organization
originating it

0 Minor changes have been made to improve

11.
reproduction Quality

LEN
Points of view or opinions stated in this docu-
ment do not necessarily represent Oficial

ON
OERI position or policy

THE CROSS-CONTEXTUAL TRANSFER OF PROBLEM SOLVING STRATEGIES
FROM LCGO TO NON-COMPUTER DOMAINS

Karen Swan and John B. Black
Teachers College, Columbia University

/

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Karen Swan

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

Recent nationwide assessments of student achievement have fi bind that
despite adequate basic skills, students' problem solving performance remains
disturbingly poor (National Assessment of Educational Progress, 1983; Kirsch &
Jungeblut, 1986; Jacobson, Doran, Chang, Humrich & Keeves, 1987). Because It
uniquely combines concrete, formal and procedural representations, computer
programming is commonly prescribed as fertile ground for the teaching and learning
of such skills. The Logo programming language, in particular, was developed for
just such a purpose (Papert, 1980). Research to date, however, has failed to
clearly identify either the cognitive mechanisms or pedagogical approaches that
cultivate the development of problem solving abilities within programming
environments, let alone, their transfer from programming to other educational
contexts (Mandinach & Linn, 1986; Clements, 1987; Pea & Kurland, 1987; Salomon &
Perkins, 1987).

The research we report investigated the relationship between learning to
program in Logo and the development of problem solving skills. In particular, we
sought a finer-grained analysis of the problem solving strategies utilized in Logo
programming environments, the pedagogical approaches that might help cultivate
such processes, and the cognitive mechanisms involved in their transfer to non-
computer domains. Our investigation was based on a study of the Logo/problem
solving literature.

LOGO/PROBLEM OLVING RESEARCH.
The Syrac.:se Logo Project (Statz, 1973) studied the effects of Logo

programming experictice on fourth graders. While reporting gains on word puzzles
and permutation tasics, they found no increase in general problem solving skills.
The Brookline Logo Project (Papert, Watt, diSessa & Weir, 1979) attempted to
correlate work in Logo with increased geometric reasoning ability. Although they
found some increased skills among students with Logo experience, these were not
statistically significant. The Edinburgh Logo Project (Watt, 1982) focused on the
use of Logo to create an environment for learning to think mathematically. Tests
results revealed that while a Logo group improved a little more than a control
group on a Basic Maths test, the control group evidenced slightly more improvement
than the experimental group on tests of Maths Attainment.

Logo Project PROKOP in Darmstadt, West Germany, studied Logo-based high
school mathematics programs for five years. This extensive curriculum development
project experimented with the teaching and learning of problem solving skills in five
areas -- non-numerical mathematics, linguistics, computer science, artificial
intelligence, and gaming. Although they found significant results on computers,
these did not transfer to paper and pencil tests. Similarly, Richard Noss (1984, p.
91) of the Chiltern Logo Project in Great Britain writes, "Preliminary interview
transcripts with children who have had 55 hours Logo experience over eighteen
months, have suggested that children are capable of making use of their Logo
knowledge to make interesting algebraic generalizations in a non-Logo context," but
reports no transfer to standardized measures. The Queen's University two year
study of Logo implementations in regular classrooms in Eastern Ontario (Higginson,
1982 p. 228) found that "Logo appears to touch something quite fundamental it
children's learning procedures irrespective of the 'school ability' of the child," but
likewise no transfer to standardized measures.

Extensive studies at Bank Street College of Education in New York City
(Pea & Kurland, 1984), and at the Technion in Haifa, Israel (Leron, 1985) found no

,-,
0

correlation at all between Logo experience and general problem solving abilities.
Roy Pea writes:

Our psychologists studying the cognitive effects of Logo
created planning tasks to reveal the development of different
planning strategies, and of skills at plan revisions analogous
to program revisions. In two different studies, after a year of
Logo programming, these psychologists found no effects of
programming on performance. Children improved with age and
practice on the planning tasks, but non-programmers did just as
well after a year's time as did Logo programmers. (1984, p. 58)

A follow-up study of high school girls involved in an intensive summer mathematics
program (Pea & Kurland, 1987) revealed that students were not even acquiring
problem solving skills within the Logo programming domain.

Other studies have been more promising. Clements & Gullo (1984), for
example, assessed the effects of learning Logo programming on several aspects of
young children's cognition cognitive style, metacognitive ability, and cognitive
development. Eighteen six-year-olds were randomly assigned to a Logo group or a
control group receiving computer assisted instruction. The programming group
scored significantly higher on post-test measures of metacognitive ability and
cognitive style (reflectivity and divergent thinking), although no differences on
measures of general cognitive ability v .:re found. Miller & Emihovich's (1986)
study of pre-school children's self monitoring abilities found similar significant
increases in children's ability to detect embedded errors during a referential
communication task. In an interesting follow-up (Clements, 1987), the same children
were again tested eighteen months following their Logo or CAI experience. On the
Test of Cognitive Skills, a strong treatment effect was found on the analogies
subtest, and on the California Achievement Test strong treatment effects were
found on subtests of language mechanics and reading vocabulary.

At the Lamplighter School in Dallas, Texas, students, were given a rule
learning task in which they were shown a series of cards displaying simple figures
varying in shape, size, number, and color. Students were told what attributes to
attend to, then asked to determine the rule governing the selection of the cards.
Researchers found that third graders with extensive Logo experience scored
significantly higher on the test than did another third grade group with less Logo
experience, and higher than sixth graders with no Logo experience (Gorman &
Bourne, 1983). Recent research on the ability of kindergarten children to solve
affirmative and conjunctive rule-learning tasks (Degelman, Free, Scarlato, Blackburn
& Golden, 1986) supports these findings.

Littlefield, Delclos, Franks, Clayton, and Bransford (1986) studied the
effects of various teaching methods on students' acquisition of both Logo
programming and general problem solving skills. They found that while students
working in a discovery learning environment acquired neither, students receiving
direct instruction at least learned Logo programming concepts. Students receiving
direct instruction in mediated learning environments, moreover, both acquired Logo
programming skills and showed an increased ability to solve simple mapping
problems. None of the instructional groups, however, improved on general problem
solving measures.

2

Sharon Carver (1987) used an extensive task analysis of Logo debugging
skills, and pilot research with second graders learning Logo in a traditional
environment, to devise an intervention focused on the development of such skills
using mediated learning techniques. She then tested the intervention on fourth
graders. She reports that students both acquired Logo debugging skills and
transferred them to a non-Logo task involving debugging faulty directions.

A review of the Logo/problem solving literature, then, presents a mixed
picture of the usefulness of the language for the teaching and learning of problem
solving. Three pedagogical elements, however, seem common to successful
interventions. These are a focus on particular aspects of general problem solving
ability (Statz, 1973; Gorman & Bourne, 1984; Clements & Gul lo, 1984; Clements,
1986; Miller & Emihovich, 1986; Degelmen, et al., 1986; Littlefield, et al., 1987:
1986; Carver, 1987), direct instruction (Boecker & Fisher, 1982; Littlefield, et al.,
1986; Carver, 1987), and the use of mediated learning techniques in teacher/student
interactions (Clements & Gullo, '1984; Clements, 1986; Miller & Emihovich, 1986;
Littlefield, et al., 1986; Carver, 1987). Seen in this light, the Logo/problem solving
literature suggests that a pedagogical approach incorporating those elements will
support the transfer of problem solving skills from Logo programming to non-
computing contexts. The research we report investigates that pedagogy.

PROBLEM SOLVING STRATEGIES STUDY.

Problem solving can be decomposed into a number of distinct strategies
(Polya, 1973; Wicklegren, 1974). Certain of these seem more applicable to
programming problems in general, children's programming in particular (Clements &
Guilo, 1984; Lawler, 1985; Clement, Kurland, Mawby & Pea, 1986). Indeed, much of
the more successful Logo research has focused on particular aspects of the problem
solving processes -- cognitive style (Clements & Gullo, 1984), metacognitive ability
(Miller & Emihovich, 1986; Clements, 1987), rule learning (Gorman & Bourne, 1983;
Degelman, et al., 1986), mapping (Littlefield, et al., 1986), debugging (Carver,
1987). Correspondingly we focused our research on particular problem solving
strategies. We identified six particular problem solving strategies we believed might
be useful to children programming computers at some point in their development.
These were subgoals formation, forward chaining, backward chaining, systematic trial
and error, alternative problem representation, and analogical reasoning.

Subgoals formation.
Subgoals formation refers to breaking a single difficult problem into two or

more simpler problems. Even when no obviously solvable subgoals can be found,
breaking a problem into parts makes its solution seem less formidable, more
manageable, and less susceptible to errors. We analyzed the process of subgoals
formation into the following four steps:

1. Problem definition. Specify the problem.
2. Subdivision. Examine the problem specification to see where it
can be broken into smaller, self-contained problems. Specify
these and their connections to the larger problem.
3. Evaluation. Test the subproblems generated for grain size and
further decomposition. If the subproblems are manageable or
cannot be further decomposed, solve them. Recombine these

3

5

partial solutions into the total solution using the connections
specified in step 2.
4. Recursion. Otherwise, repeat the second and third steps for
each of the subproblems generated. Continue the process until no
more smaller problems can be generated for any of the
subproblems.

While subgoals formation might seem an obvious strategy to adults, it is
not at all obvious to many children (Carver and Klahr, 1986). Of all the problem
solving strategies we have isolated, however, it can most clearly be implemented
and concretized in the Logo environment through structured programming techniques.
In Logo, small subprocedures are easily written and placed in the workspace.
Because these can be called from anywhere in a program, a program can simply be
a list of subprocedures, a very concrete representation of the subgoals that make
up a programming solution.

Forward chaining.
Forward chaining involves working from what is given in a problem towards

the problem goal in step-by-step, transformational increments that bring one
progressively closer to that goal. The forward chaining process can be decomposed
into the following steps:

I. Problem definition. Specify the problem goal. Specify what is
giver:. Specify the constraints, if any.
2. Transformation. Use domain operators to manipulate the givens
to bring them closer to the goal state.
3. Evaluation. Compare the desired goal, the givens, and the
transformation. Test to see whether the transformation is really
closer to the goal than the givens. If it is not, redo step 2.
4. Recursion. Make the transformation a new given. Repeat
steps 2, 3 and 4 using the new given. Continue in this manner
until the goal state is reached and the problem is solved.

A programming environment, especially an interpreted environment like
Logo, is inherently supportive of the forward chaining process. Transformations can
be implemented, their effects accessed, and successful changes instantiated as
partial programs, with relative ease and little risk. A program can thus be
developed in incremental steps and such development provide a concrete model of
the forward chaining process. An important part of forward chaining, however,
involves the ability to choose appropriate transformations and evaluate whether or
not these actually bring one nearer problem solution. Forward chaining thus
requires at leact smne sort of mental model of the problem space, and is not,
therefore, typically a novice technique. We believe, therefore, that subjects'
domain expertise may effect their ability to apply forward chaining strategies within
the Logo environment, and correspondingly, significantly effect its transfer to non-
computer contexts.

Backward chaining. I

Backward chaining, as opposed to forward chaining, is typically a novice
problem solving strategy. Backward-chaining focuses on the goal state and tries to
deduce a preceding state from which that goal could be derived, then a state from
which that state could be derived, and so on, working backward to what is given in
a problem. Our analysis of the backward chaining process consists of the following
four steps:

4

6

1. Problem definition. Specify the goal state. Specify what is
given in the problem.
2. Decomposition. Specify a state that could be transformed into
the goal state in a single step.
3. Evaluation. Test the specified transformation to he sure it
can in fact be transformed into the goal state. If it cannot,
redo step 2. Examine the specified transformation to make sure
it is closer to what is given than is the goal. If it isn't, redo
step 2.
4. Recursion. Otherwise, make the specified state a new goal
state and repeat steps 2 and 3 using this new goal state.
Continue in this manner until a clear path from givens to goal
can be discerned. Use it to solve the problem.

Backward chaining is a particularly useful technique when a problem has a
uniquely specified goal, and/or is a situation in which the inputs and outputs of the
transformations involved in going from goal to givens can be uniquely specified
(Wicklegren, 1974). Such is often the case in programming problems. Indeed,
programming has been identified as a teleological domain (Bolter, 1984). Moreover,
in as much as it is typically a novice technique, backward chaining might be more
available to children.

Systematic trial and error.
Systematic trial and error involves the recursive testing of possible

solutions in a systematic, guided fashion, and the problem reduction and/or
refinement resulting from such tests. Our analysis of the systematic trial and error
process includes:

1. Problem definition. Specify the problem goal.
2. Approximate solution. Create and implement a plan to solve
the problem.
3. Evaluation. Compare the problem goal with the instantiated
solution. If there are no discrepancies between them, the
problem is solved. Otherwise, generate a description of the
discrepancies between the desired goal and the instantiated_
solution.
4. Recursion. Use the description of goal/solution discrepancies
to revise the plan, and reapply step 2 and 3. Continue in this
manner until the instantiated solution matches the desired goal.

Piaget (1971) believed that the application of systematic trial and error
strategies was an important determinant of formal operational ability. Systematic
trial and error, then, is an obvious candidate for 'esting Papert's (1980) notion that
programming environments support the concretizing of the formal. Certain types of
graphics programming, moreover, are paradigmatic of systematic trial and error
strategies. The creation of a drawing, for example, requires the progressive testing
and refinement of its procedures. Debugging also makes use of, and provides
symbolic representations for, such techniques (Carver, 1987).

Alternative Representation.
Alternative representation involves conceptualizing a problem from differing

perspectives. Po lya (1973) writes that often the way a problem is stated is really
all that makes it difficult. Simple restatement will make its solution obvious. We

5

have developed the following four-step description of the development of alternative
representations of a problem:

1. Problem definition. Specify the problem.
2. Alternative representation. Generate an alternative problem
specification.
3. Evaluation. Test to see whether the new problem specification
suggests problem solution. If it does, solve the problem.
4. Recursion. Otherwise, repeat the second and third steps by
generating and evaluating another problem specification.

We believe programming is conducive to the development of alternative
representations both because there are never single correct solutions to programming
problems, and because differing representations can quite easily be instantiated and
pragmatically tested within programming environments. The cooperative atmosphere
of the typical Logo classroom, lends additional support to the development of
differing problem solutions. Logo teachers will often point to differing ways of
solving a problem in the language. Indeed, Clements and Gullo's (1984) study of
the effects of Logo programming on young children's cognition found significant
increases in the ability to produce alternative representations among children with
Logo experience. Statz's (1973) finding of significant increases on permutation
tasks may also support this view.

Analogy.
Analogy involves the discovery of a particular similarity between two things

otherwise more or less unlike, "a mapping of knowledge from one domain (the base)
into another (the target) predicated on a system of relations that holds among the
objects of both domains." (Gentler, 1987). An important factor in this process,
especially in problem solving contexts, is goal-relatedness, how one thing is like
another with respect to a specified goal (Holyoak, 1985). The use of analogy in
problem solving can be decomposed into the following steps:

1. Problem definition. Specify the desired goal. Specify the
base and the target systems.
2. Mapping. Perform a mapping between the base and target
systems.
3. Evaluation. Test the soundness of the match in terms oi oth
structural similarity and pragmatics (goal related conditions). If
the analogy generated meets the goal conditions, and the
structural similarity between the base and the target holds, the
mapping is sound. Solve the problem.
4. Recursion. Otherwise, return to step 2 and generate another
and evaluate it (step 3). Continue in this manner until an
adequate representation is discovered.

We believe that programming environments inherently support , the
development of analogy, in that c.ne is always mapping between computer code (a
formal representation) to program output (a concrete representation). Indeed, Doug
Clements' (1987) study found significantly better analogical reasoning among
students with prior Logo experience.

RESEARCH HYPOTHESES.
These six problem solving strategies, then, represented our best guess as fo

what aspects of general problem solving ability might be most applicable to children

6

programming in Logo. In an effort to isolate the particular techniques most
relevant in Logo programming and/or most available for transfer to other domains,
we developed our instructional units and our measuring instruments around these six
strategies.

A second notion guiding our research was that the teaching and learning of
Logo has been notoriously non-directive (Leron, 1985; Pear & Kurland, 1987;
Salomon and Perkins, 1987). It is hardly likely, we felt, that the transfer of any
complex skill is so automatic. Indeed, positive results have been reported from
Logo interventions involving structured, as opposed to non-directed, learning designs
(Miller & Emihovich, 1986; Littlefield, et al., 1986; Carver, 1987; Clements, 1987;
Salomon & Perkins, 1987). We determined, therefore, to focus attention specifically
on the problem solving strategies we identified. We devised introductory, off-
computer activities to highlight these particular techniques, and followed these with
sets of programming problems particularly amenable to solutions employing such
strategies.

A third consideration involved the importance of metacognitive monitoring
in the problem solving process. We thought that an explicit focus on the cognitive
processes involved in each of the particular problem solving strategies we identified
would help children to understand and internalize such metacognitive behaviors.
Although the paired work on computers and peer-teaching that are typically an
important part of Logo classrooms support such focus, we felt the modeling by
teachers of the cognitive processes involved in solving programming problems was
indicated.

Indeed, what Feuerstein (1980) calls mediated learning, has been
demonstrated to be an effective means for teaching self regulated learning in
general (Kendall & Ho llon, 1979; Meichenbaum, 1977) as well as subject matter
specific learning strategies (Bereiter & Bird, 1985; Schenk, 1984; Palinscar &
Brown; 1984; Weinstein & Mayer, 1986; Corno, 1986). It stands to reason that the
use of similar approaches in the teaching and learning of problem solving in Logo
could support the development of the important metacognitive components of
problem solving behaviors within Logo environments as well. We therefore
determined to use a mediated learning approach in our instructional interventions.

Our first hypothesis, then, was that given focused instruction and practice
in a mediated learning environment in applying each of the identified problem
solving strategies to the solution of Logo programming problems, students would
transfer and apply these to problem solutions in non-computing domains. That is,
we felt that the combination of three instructional components -- a focus on
particular aspects of general problem solving, direct instruction, and a mediated
learning environment -- would support the development of problem solving Skills
within Logo programming contexts and their transfer to non-computing domains.

Our second hypothesis was that there are developmental differences in
students' ability to acquire and transfer problem solving skills. It seemed to us
likely that problem solving skills are, themselves instances of a larger ability to
think logically and abstractly, and that this ability, which Piaget (1971) terms
formal operational, develops slowly during the period when a child is in middle and
junior high school. We thought, therefore, that students might be more likely to
acquire and transfer problem solving strategies at differing grade levels. Our
research was thus directed at children in this grade range to try and determine
whether and when Logo experience might be most useful.

7

Finally, the teaching and learning of Logo has been, for the most part,
restricted ti the turtle graphics domain generally associated with the language.
The Logo language, however, is far richer than turtle graphics alone would suggest.
Logo make list manipulation accessible to young children (Swan, 1986), and
programming with lists invokes a context quite different from graphics, a context
which, we believe, more faithfully evokes the workings of the language itself.
There is reason to believe that such deep structural understanding is an important
factor in the development of problem solutions (Greeno & Simon, 1984).

Additionally, research by Gick and Holyoak (1983) suggests that the transfer of
problem solutions more readily occurs when these are initially learned in more than
one context.

Gick and Holyoak were interested in the transfer of problem solutions
embedded in story contexts. They presented subjects with Du-ker's (1945) classic
radiation problem -- how to use radiation beams to destroy a tumor in a patient
without destroying the patient. The solution is to use several less harmful beams
that converge and sum to destructive potency only on the tumor. Some of the
subjects had previously read a story about a general who broke up his forces to
avoid alerting an enemy to his attack, converging them for the successful conquest
of an enemy fortress. Gick and Holyoak hypothesized that subjects who had read
the military story would transfer the embedded strategy and so be more likely to
solve the radiation problem. They were wrong. All subjects' experienced equal
difficulty solving the radiation problem. They found, however, that given a second
story illustrating the divide and conquer strategy, subjects were better able to solve
the radiation problem.

It seems that learning is context dependent. Our minds have no way of
distinguishing what is from what is not significant in any given situation, thus, we
tend to store information as an undifferentiated whole. When an idea is
encountered in two or more contexts, however, context drops away and ideas are
more clearly delineated. General concepts are abstracted from similarities among
individual cases; problem solving techniques are generalized from particular problem
solutions. We thought that such might be the case with the transfer of problem
solving from Logo contexts. We thought it possible that students applying problem
solving strategies to the solution of both graphics and lists problems might be more
likely to transfer them to the solution of problems in non-computing domains.

We created three student groupings students working with just graphics
programming problems, students working with just list processing problems, and
students working with both graphics and list programming problems. We varied the
contexts of the problems which they were given, to distinguish between the
efficacies of these varying base domains. Our third hypothesis, then, was that
there would be differences in ' students' abilities to transfer problem solving skills
depending on the base context(s) in which those skills were acquired. In particular,
we thought that if the concreteness of the base domain was the dominant factor,
students programming in just graphics would show the greatest transfer effects; if a
clear model of the problem space was the dominant factor, students working with
just lists problems would show the greatest transfer effects; and that if multiple
base domains was the most important factor, students working with both graphics
and lists problems would show the greatest transfer effects.

8

16

METHOD.
Subjects.

Our subjects were 133 students in the fourth through eighth grades of a
private suburban elementary school taken from their regular computer classes. All
students had at least 30 hours previous experience with both graphics and lists
programming in Logo.

Procedure.
All subjects were pre-tested on their ability to solve problems requiring the

use of each of the six problem solving strategies. They were then tandomly
assigned by grade to one of the three contextual groupings, receiving respectively
graphics, lists, or both graphics and lists problems. Groupings remained conbtant
across the six instructional units corresponding to the six identified problem solving
strategies. A consistent instructional sequence was followed for each strategy unit.
Upon completion of all si,. units, subjects were post-tested using different but
analogous non-computing problems. Differences between pre- and post-test rn an
scores were examined using analysis of variance. The study thus involved a sx
(strategies) by five (grade levels) by three (contextual groupings) design.
Independent variables were grade level, strategy, and contextual grouping. The
dependent variables were the scores on the tests of each of the problem solving
strategies.

Intervention. \ ,

Students were introduced to each problem solving strategy through whole
group activities designed' to provide concrete, off-computer models of the cognitive
processes involved in them. Forward chaining, for example, was introduced with a
treasure hunt in which students followed a sequence of clues to discover a hidden
treasure. Classic puzzles whose solution involved the application of the particular
strategy under discussion were also solved and discussed with the whole class,
culminating in a discussion of the cognitive processes involved in the application of
the strategy.

The group work of these introductory exercises was followed by individual
or paired work on unit problem sets comprised of four programming problems each.
These were varied according to student groupings -- students in the graphics
condition were given just graphics problems to work on, students in the lists
condition were given solely list processing problems, and students in the two-domain
condition were given both graphics and lists problems to solve.

Students worked on problems during two 45-minute class periods per week
for approximately 12 weeks. A teacher and/or an intern were available for help on
all problems. Both maintained a mediated learning approach toward student
assistance, eliciting student and/or modeling their own cognitive processes as they
guided students toward problem solution. For each programming problem they
solved, students were required to fill out a problem solving worksheet that showed
the givens, the goal, and the solution steps for each problem, and to turn in a
listing and a run of their program.

Tests.
Subjects were tested both before and after the entire, six-unit intervention

on their facility in applying each of the six identified problem solving strategies.
We designed a separate measure for each of these:

-9

i1

Subgoals formation. Our measure of students' ability to decompose complex
problems into smaller subgoals units consisted of mathematical word problems that
required decomposition for correct solution. Students were asked not only to solve
the problems but to show how they broke them into parts. They were given credit
for correctly identified subgoals, as well as for the correct answer.

Forward chaining. The test designed to measure subjects' forward chaining skills
was a paper-and-pencil version of the computer program Rocky's Boots (The
Learning Company, 1982). In Rocky's Boots, symbolic and, or, and not gates are
combined to produce machines that respond to targeted attributes and sets of
attributes (e.g. blue diamonds, crosses or green circles, etc.). Combinations of
gates must be built up in a forward chaining manner to achieve correct solutions.
Our paper and pencil version had subjects draw the required connections.

Backward chaining. The test designed to measure subjects' backward chaining skills
was a paper-and-pencil adaptation of the computer game The Factory (Sunburst,
1984). In The Factory, players are shown a finished product and asked to combine
various machines to produce a similar product. Thus, players must work backwards
from the product to deduce a correct sequence of machines that will produce it.
Our paper-and-pencil version had subjects list the required machine sequence.

Systematic trial and error. Cryptography involves systematically trying and testing
different symbol combinations to attain coherent decoding systems. We chose two
decoding exercises to test subjects' abilities to systematically utilize trial and error
strategies. The first of these was a shifted alphabet code. The second involved
variations on a number code problem from Newell and Simon (1971):

DoNIAL.. 73) 5+ CIEP,ALID)
ROBE k_T

Alternative representation. The measure of students' ability to create alternative
representations we used, was derived from the figures subtest of the Torrance Test
of Creative Thinking (Torrance, 1972). Students were given sets of either parallel
lines or circles and asked to use these as a basis for producing as many interesting
and unusual drawings as they could make.

I

Analogy. Subjects' skill at analogical reasoning was measured with completion
exercises comprised of items representing both verbal and visual analogies. Verbal
items were of the following form:

SUGAR : SWEET :: LEMON :
Visual analogies were similar:

Different but analogous p ;ublems were given on the pre-and post-tests for
each technique, and differences between the two examined using analysis of
variance.

10 -

12

RESULTS.
Highly significant (p < .001) differences between pre- and post-test scores

were obtained on measures of all strategies except backward chaining, across both
contextual groupings and grade levels. These results support our first hypothesis,
that a pedagogy combining a focus on particular aspects of general problem solving,
direct instruction, and a mediated learning environment will enable the development
of problem solving skills within Logo programmir.g t.ontexts and their transfer to
non-computing domains.

MEAN SCORES

SUBG04AthLS

pre- 4.3
post- 6.3

FORWARD
4th

pre- 8.4
post- 9.7

FORMATION
5th 6th 7th 8th
6.9 8.2 10.9 10.6
8.4 10.6 12.6 12.6

CHAINING

BACKWARD
4th

pre- 11.0
post- 10.8

total
7.5
9.8

5th 6th 7th 8th total
7.7 7.8 10.9 8.6 8.4
9.8 10.5 11.5 11.4 10.4

CHAINING
5th 6th 7th 8th
10.3 11.4 10.9 11.2
10.9 10.6 11.5 12.4

total
10.9
11.2

SYSTEMATIC TRIAL AND ERROR
4th 5th 6th 7th 8th total

pre- 0.4 5.7 6.0 6.8 10.4 5.1
post- 7.6 8.0 10.6 11.4 13.1 9.5

ALTERNATIVE REPRESENTATION
4t135Ab6111 7th 8th total

pre- 92 96 91 108 94 96
post- 115 133 143 175 134 136

ANALOGY
4th__5th 6th 7th 8th iota'

pre- 17.5 18 _ 18.8 19.4 19.2 18.4
post- 17.9 20.1 19.6 21.3 21.1 19.5

13

We also found highly significant (p < .01) differences between grade levels
on measures of subgoals formation, systematic trial and error, alternative
representation, and analogy, supporting our second hypothesis, that there are
developmental differences in students' abilities to acquire and transfer particular
problem solving strategies. Younger students exhibited greater increases on tests of
subgoals formation and systematic trial and error; older students had greater gains
on alternative representation and analogy measures. These results seem to indicate
differential readiness to acquire specific problem solving strategies.

No sig. licant differe ices between contextual isroupings was found (p > .1).
Our third hypothesis, that students' abilities to transfer problem solving skills would
vary depending on the base contexts(s) in which those skills were acquired, was
thus not confirmed. It may be that more than two, or that two more different,
domains are necessary before the effects of multiple domains can be realized.

In future research, we plan to investigate how and how much the various
aspects of c current intervention design contributed to the transfer effects we
found. We also intend to investigate the specific cognitive and metacognitive
mechanisms involved in the learning and transfer of problem solving strategies from
Logo programming domains. In particular, we want to determine whether computer
use makes a critical contribution, that is, whether, as Papert (1980) suggests
computer manipulatives have something to offer to the transfer process over and
above concrete manipulatives.

- 12 -

1 4

References

Bereiter, C. and Bird. M. (1985) Use of thinking aloud in identification and teaching
of reading comprehension strategies. Cognition and Instruction, 2, 131-156.

Boecker, H. D. and Fischer, G. (1982) Logo Project PROKOP. Byte, 7, (8), 329-330.

Bolter, J. D. (1984) Turing's Man. Chapel Hill, NC: University of North Carolina
Press.

Carver, S. M. (1987) Transfer of Logo debugging skill: analysis, instruction, and
assessment. Computer Systems Group Bulletin, 14,(1), 4-6.

Clement, C. A., Kurland, D. M., Mawby, R. & Pea R. D. (1986) Analogical reasoning
and computer programming. Journal of Educational Computing Research, 2,(4), 73-94.

Clements, D. H. (1987) Longitudinal study of the effects of Logo programming on
cognitive abilities and achievement. Journal of Educational Computing Research,
3,(1), 73-94.

Clements, D. H. & Gullo, D. F. (1984) Effects of computer programming on young
children's cognition. Journal of Educational Psychology, 76, 1051-1058.

Como, L. (1986) Teaching and self-regulated learning. Paper presented at the
annual meeting of the American Educational Research Association. San Francisco.

Degelman, D., Free, J. U., Scarlato, M., Blackburn, J. M. and Golden, T. (1986)
Journal of Educational Computing Research, 2,(2), 199-205. ,

Duncker, K. (1945) On problem solving. Pyschological Monographs, 58.

Ehrlich, K., Soloway, E. and Abbott, V. (1982) Transfer Effects from Programming
to Algebra Word Problems: A Preliminary Study. (Research Report 11257). New
Haven, CT: Yale University Department of Computer Science.

Gick, M. L and Holyoak, K. J. (1983) Schema induction and analogical transfer.
Cognitive Psychology, 12, 306-355.

Gorman, H., Jr. and Bourne, L. E. (1983) Learning to think by learning Logo: rule
learning in third-grade computer programmers. Bulletin of the Psychonomic Society,
21, 165-167.

Green°, J. G. & Simon, H. A. (1984) Problem solving and reasoning, (Technical
Report No. UPITT/LRDC/ONR/APS-14). Washington, DC: Learning Research and
Development Center, Office of Naval Research.

Higginson, W. (1984) About that rose garden: remarks on Logo, learning, children
and schools. Pre-Proceedings of the 1984 International Logo Conference, 31-38,
Cambridge, MA.

- 13 -

15

Howell, R. D., Scott, P. B. and Aamond, J. (1987) The effects of the "Instant"
Logo computing language on the cognitive development of very young children.
Journal of Educational Computing Research, 3, (2), 249-260.

Jacobson, W. J., Doran, R. L., Chang, E. Y. T., Humrich, E. Keeves, J. P. (1987)
The Second IEA Science Study -- United States. New York: Teachers College,
Columbia University.

Kendall, P. C. and Ho llon, S. (Eds.) (1979) Cognitive-Behavioral Interventions:
Theory, Research, and Procedures. New York: Academic Press.

Kirsch, I. S. and Jungeblut, A. (1986) Literacy: Profiles of America's Young Adults.
(Report No. 16-p1-02). Princeton, NJ: Educational Testing Service.

Lawler, R. W. (1985) Computer Experience and Cognitive Development: A Child's
Learning in a Computer Culture. New York: Halsted Press.

Leron, U. (1985) Logo today: vision and reality. The Computing Teacher, 12,(6),
26-32.

Mandinach, E. B. and Linn, M. C. (1986) The cognitive effects of computer learning
environments. Journal of Educational Computing Research, 2,(4), 411-428.

Meichenbaum, .D. (1977) Cognitive Behaviors Modification. New York: Plenum.

Miller, G. E. and Emihovich, C. (1986) The effects of mediated programming
instruction on preschool children's self-monitoring. Journal of Educational Computing
Research, 2, (3), 283-297.

National Assessment of Educational Progress. (1983) The Third National Mathematics
4ssessment: Results, Trends and Issues, (Report No. 13-MA-01). Denver, CO:
Educational Commission of the States.

Newell, A. and Simon, H. A. (1972) Human Problem Solving. Englewood Cliffs, NJ:
Prentice-Hall.

Noss, R. (1984) Explorations in mathematical thinking: some implications from Logo
classrooms. Pre Proceedings of the 1984 International Logo Conference, 85-91,
Cambridge, MA.

Palinscar, A. S. and Brown, A. L. (1984) Reciprocal teaching of comprehension-
fostering and comprehension-monitoring activities. Cognition and Instruction, 1,
117-175.

Papert, S. (1980) Mindstorms. New York: Basic Books.

Papert, S., Watt, D. diSessa, A, & Weir, S. (1979) Final Report of the Brookline
Logo Project, (Logo Memo 53). Cambridge, MA: MIT Artificial Intelligence
Laboratory.

Pea, R. D. (1984) Symbol systems and thinking skills: Logo in context. Pre-
Proceedings of the 1984 International Logo Conference, 85-91, Cambridge, MA.

- 14 -

1 t3

Pea, R. D. and Kurland , M. K. (1984) On the cognitive effects of learning
computer programming. New Ideas in Psychology, 2,(2), 137-167.

Pea, R. D. and Kurland, D. M. (1987) Logo programming and the development of
planning skills. In K. Sheingold and R. D. Pea (Eds) Mirrors of Minds. Norwood,
NJ: Ablex Publishing.

Piaget, J. (1971) Genetic Epistemology. New York: W. W. Norton.

Polya, G. (1973) How To Solve It. Princeton, NJ: Princeton University Press.

Salomon, G. and Perkins, D. N. (1987) Transfer of cognitivie skills from
programming: When and how? Journal of Educational Computing Research, 3,(2),
149-170.

Schunk, D. H. (1984) Self-efficacy perspective on achievement behavior.
Educational Psychologist, 19, 848-857.

Statz, J. (1973) Problem Solving and Logo: Final Report of the Syracuse Logo
Project. Syracuse, NY: Syracuse University.

Swan, K. (1986) Primarily lists. Pre Proceedings of the 1986 International Logo
'onference. Cambridge, MA.

Torrance, E. P. (1972) Torrance Tests of Creative Thinking. Lexington, MA: Personal
Press.
Watt, D. (1982) Logo in the schools. Byte, 7, (8), 116-134.

Weinstein, C. E. and Mayer, R. E. (1985) The teaching of learning strategies. In
Wittrock, M. C. (Ed.) Third Handbook of Research on Teaching. New York:
Macmillan Co.

Wickelgren, W. A. (1974) How to Solve Problems. San Francisco: W. H. Freeman.

- 15 -

